Overview
Anonymization is a data processing technique that removes or modifies personally identifiable information; it results in anonymized data that cannot be associated with any specific individual.
Randomization is the process of making something random; for example, generating random numbers.
Etlworks supports both techniques via scripting (JavaScript and Python).
Process
Step 1. Add calculated field in mapping.
Step 2. Add field function in the following format:
Generate random anonymous value
In this mode, the function generates random anonymous values using a given language and data provider.
etlConfig.randomizer("locale").dataProvider().attribute();
Generate value and preserve the link between the actual and new anonymous value
In this mode, the function generates random anonymous values using a given language and data provider but preserves the link between the actual and the anonymous value. For example, if the actual source value is John
and the new anonymous value is Joe
, the function will return Joe
each time the actual source value is John
.
var randomizer = etlConfig.randomizer("locale");
randomizer.reuse(fieldValue, randomizer.dataProvider().attribute());
Data Providers
Here is a list of the available data providers.
Locales
A Locale represents a specific geographical, political, or cultural region.
Here is a list of supported locales.
Examples
First name (German locale)
etlConfig.randomizer("de").name().firstName();
First name (English locale)
etlConfig.randomizer("en").name().firstName();
Last name (German locale)
etlConfig.randomizer("de").name().lastName();
Last name (English locale)
etlConfig.randomizer("en").name().lastName();
Email (German locale)
etlConfig.randomizer("de").name().lastName();
Email (English locale)
etlConfig.randomizer("en").internet().emailAddress();
Comments
0 comments
Please sign in to leave a comment.